VIRUS BULLETIN

VIRUS ANALYSIS
LEAPS AND BOUNDS

Peter Ferrie
Symantec Security Response, USA

Imagine you’re a virus writer, someone who specialises in
one-of-a-kind viruses, and you want to do something really
new and different. You want it to be entrypoint-obscuring,
using a technique that no one has used before. You want a
polymorphic decryptor, one that appears to be deceptively
simple. Of course, you also want a 32-bit and a 64-bit
version. What would it look like? The answer is
W32/Bounds and W64/Bounds! AMD64.

THE IMPORT/EXPORT BUSINESS

Bounds uses an entrypoint-obscuring technique that no one
has used before. The secret lies in the Bound Import Table
(hence the name of the virus), but we need to start with the
Import Table.

The Import Table begins with an array of Import Directory
Tables, which describe the rest of the import information.
Each Import Directory Table contains the name of the DLL
from which functions will be imported, the time/date stamp
of the DLL, an array of function names to import, and an
array of host memory locations in which to store the
function addresses.

BOUND IMPORT TABLE

The Bound Import Table works in conjunction with the
Import Table, and can decrease loading time for some
applications.

The idea is that the array of host memory locations can be
filled in advance, given the knowledge of the DLL from
which functions will be imported. The assumption is that
for any given DLL, the combination of its name and its
time/date stamp is unique. Thus, the functions inside that
DLL will always have the same addresses, and any
application that uses those functions can have those
addresses stored in the Import Table.

However, not all DLLs are suitable for this kind of
manipulation, which brings us to the Bound Import Table.
The Bound Import Table is an array of DLL names and
time/date stamps for the DLLs for which the addresses are
considered permanent. When the operating system loads an
application, it checks whether the application contains a
Bound Import Table. If it does, then the operating system
checks that each time/date stamp in the Bound Import Table
matches the time/date stamp for each DLL that is named in
the Import Table.

If the time/date stamp matches, then the addresses that
correspond to the Import Table entry for that DLL are
assumed to be correct, and are not updated. If a time/date
stamp does not match, or there is no entry for it in the
Bound Import Table when compared to the Import Table,
the address will be fetched from the DLL that is named in
the Import Table in the usual way.

BOUNDARY CONDITIONS

Now let us return to Bounds. The virus appears to be based
on a member of the Chiton family. Indeed, we can see
from a text string in the virus body that the author is the
same.

The virus behaves in much the same way as several viruses
we have seen previously. It begins by retrieving the address
of kernel32.dll, using the address of the ExitProcess() API
as a hint to where in memory to begin looking. After
gaining access to kernel32.dll, the virus will retrieve the
addresses of the API functions that it requires, using the
CRC method to match the names, so no strings are visible in
the code. The virus then searches for files in the current
directory and all subdirectories.

Files are examined for their potential to be infected,
regardless of their suffix, and will be infected if they
conform to a very strict set of conditions.

The first of these is that the file is not protected by the
System File Checker. The remaining filters include the
condition that the file being examined must be a character
mode or GUI application, that the file must have no digital
certificates, and that it must have no bytes outside the
image. The virus also requires a particular CPU, depending
on the variant of the virus. For the W32 version, the
required CPU is an Intel 386+; for the W64 version, the
required CPU is an AMD64 or Intel EM64T.

ENTRYPOINT OBSCURING

The virus’s entrypoint-obscuring technique works by
checking first if a file has a Bound Import Table. The virus
does not create its own Bound Import Table, so if a file does
not have one, it will not be a candidate for infection.

If the file does have a Bound Import Table, then the virus
checks whether it contains an entry for kernel32.dll. The
reason is that the virus wants to hook the ExitProcess() API
within the Import Table, which is exported by kernel32.dll.
Thus, if kernel32.dll is not referenced by the Bound Import
Table, then even if ExitProcess appears in the Import Table,
its address will be replaced by the operating system
whenever the application loads.

o

If the Bound Import Table does have an entry for
kernel32.dll, then the virus searches the Import Table for the
Import Directory Table that corresponds to kernel32.dll. The
virus examines only the first entry that refers to
kernel32.dll, since this covers the most common case.
(There may be more than one entry for any given DLL, and
compilers such as Borland Delphi produce such files, but
these are exceptions.)

Once the Import Directory Table that corresponds to
kernel32.dll has been found, the virus searches within

the array of host memory locations for a reference to the
address of the ExitProcess() API. If the address is found,

it is replaced within the array by the entrypoint of the virus.

When a file that meets the infection criteria is found, it will
be infected. If relocation data exists at the end of the file,
the virus will move the data to a larger offset in the file,
placing its own code in the gap that has been created. If
there is no relocation data at the end of the file, the virus
code will simply be placed here.

POLYMORPHISM

The polymorphic decryptor in Bounds is perhaps the most
interesting thing about the virus. In a typical decryptor, the
CPU registers are initialized to fixed values, using any
combination of MOV/XOR/PUSH+POP, after which the
values might be altered in obscure ways to other values.

Bounds, on the other hand, uses no such instructions to
initialize the registers. Instead, only two operations are
used: AND and OR. These operations are used repeatedly to
initialize the individual bits within each register.

In addition to these operations, the decryptor uses the rest of
the set — ADC/ADD/SBB/SUB/XOR/CMP - to obfuscate
the values temporarily. Once the registers have been
initialized completely, these other operations are used to
alter the values permanently. The use of ADC and SBB is
not random — the virus keeps track of the carry flag status,
so the effects of the ADC and SBB are known.

The result is something that looks like this (W32 version):
81 E5 59 E6 5A ED and ebp, O0ED5SAE659h
81 D4 OA Al DA F9 adc esp, O0OF9DAA10Ah
81 F1 D8 AF FF 07 xor ecx, 007FFAFD8h

81 CE A2 46 3E CB or esi, O0CB3E46A2h

or this (W64 version):
48 81 CE OE EB 43 23 or rsi, 2343EBOEh
48 81 FO 3D DD 81 52 xor rax, 5281DD3Dh
48 81 D4 F4 BE 9A 43 adc rsp, 439ABEF4h

48 81 CB 36 F7 90 42 or rbx, 4290F736h

An impenetrable list of instructions, all the same length.

VIRUS BULLETIN

The virus generates a random number of these instructions
before it generates the real decryptor instructions. Since

the two are indistinguishable, the problem is knowing where
to start.

The reason this is a problem is because the ESP register is
similarly transformed. Since the register values are not
known to the virus prior to initializing them in the
decryptor, an anti-virus CPU emulator could simply start
emulating from the first instruction and eventually reach the
real entrypoint of the virus. At that point, the decryptor
would start to initialize the registers in the usual manner,
and it would work regardless of the initial values.

Normally, this would defeat the entrypoint obscuring
technique. However, the use of the ESP register means that
emulating from the first instruction will result in a value of
the ESP register which has been transformed in an
unpredictable way. This appears to be intentional, since the
decryptor then writes decrypted values to the stack prior to
placing them into executable memory.

If the ESP register has been randomized, then when the
decryptor starts to write to the stack as shown below, the
memory location that will be touched is no longer known to
be the stack.

W32 version:

89 84 B4 D7 7C 94 1B mov [esp+esi*4+1B947CD7h], eax
W64 version:

89 B4 54 7C E9 AA 84 mov [rsp+rdx*2-7B551684h], esi

If the memory location happens to point instead to the
decryptor code, then the decryptor will be damaged, and the
virus will not work in the emulated environment.

Even without that complication, a typical decryptor will
write to memory in a linear manner, so an emulator could
simply find the first memory reference, then start emulating
from there, knowing what value will come next in memory,
and eventually recovering all of the registers to decrypt the
entire code. The author of Bounds was probably aware of
this. While the writes to the stack memory are linear, the
values that are written there do not correspond to linear
addresses within the virus code. Instead, the virus writes a
random number of values to the stack, then begins to pop
some of them into the virus body, as shown below.

W32 version:

8F 84 FD D7 29 AF 2D pop dword ptr
[ebp+edi*8+2DAF29D7h]

W64 version:
66 8F 05 4A B4 FF FF pop word ptr [rip-00004BB6h]

The 32-bit version uses the registers to decode to a random
address located earlier than the current position, not exactly

at the start of the decryptor.

VIRUS BULLETIN

The 64-bit version uses RIP-relative addressing to overwrite
the decryptor from the initial address. The reason for the
RIP-relative addressing has to do with a limitation of
register assignment: 64-bit CPUs do not support 64-bit
immediate values. Therefore, the virus cannot perform
64-bit arithmetic to set the 64-bit CPU registers to point to
the memory address of the decryptor.

The entire virus is never stored on the stack all at once —
some values are placed onto the stack, and some values are
then removed from the stack. Sometimes, more values can
be written to the stack before all values are removed from
the stack; sometimes all values are removed from the stack
before more values are written to the stack.

OOPS

Every value in the virus is decoded individually using this
method, resulting in very large decryptors. Since the size of
the decryptor is hard to guess, it is easy to understand how a
miscalculation could creep into the virus code.

Sure enough, while the virus always allocates enough bytes
to hold the decryptor, a bug sometimes results in not all of
the bytes being copied into the host. Both the 32-bit and
64-bit versions are affected, but in the case of the 64-bit
version, the decryptor almost always ends before the cutoff
point, so the bug is not so obvious.

CONCLUSION

So imagine that you’re a virus writer, someone who
specialises in one-of-a-kind viruses, and you want to do
something that’s really new and different. What should it
be? How about quitting?

W32/Bounds,

W64/Bounds!AMD64

Type: Direct-action parasitic
appender/inserter.
Size: 246kb (W32), 583kb (W64).

Infects: Windows PE files (32-bit for W32,
64-bit AMD64 for W64).

Payload: None.

Removal: Delete infected files and restore them
from backup.

o

